Chapter 2.4

Rates of Change and Tangent Lines

Objectives

- Average Rates of Change
- Tangent to a Curve
- Slope of a Curve
- Normal to a Curve
- Speed Revisited

Learning Target

• 80% of the students will be able to write the equation for the line tangent to the parabola $y = x^2$ at the point P(2, 4).

Standard

G-C.4 Construct a tangent line from a point outside a given circle to the circle.

Overview

- Apply directly the definition of the slope of a curve in order to calculate slopes..
- Find the equations of the tangent line and normal line to a curve at a given point.
- Find the average rate of change of a function.

Rate of Change

- Mile post 282
- Mile post 242
- Elapsed time 32 min
- Average speed?
 - $\frac{282\,mi-242\,mi}{32\,min} \times \frac{60\,min}{h}$
 - 75 mph
- Instantaneous speed?

Average Rate of Change

- Find the average rate of change of the function $f(x) = x^3 x$ over [1, 3].
 - f(1) = 0
 - f(3) = 24
 - $\frac{f(3)-f(1)}{3-1} = \frac{24-0}{2} = 12$

Exercise 1

Find the average rate of change of $f(x) = \sqrt{4x + 1}$ a. [0, 2]

b. [10, 12]

Example 2

- Find the average rate of change of $f(x) = \ln x$ over the given intervals.
- a. [1, 4] $\frac{\ln 4 - \ln 1}{4 - 1} = \frac{\ln \frac{4}{1}}{3} = \frac{\ln 4}{3} \approx 0.462$ b. [100, 103] $\frac{\ln 103 - \ln 100}{103 - 100} = \frac{\ln \frac{103}{100}}{3} = \frac{\ln 1.03}{3} \approx 0.0099$

Exercise 2

Find the average rate of change of the function $f(x) = 2 + \cos x$ over the given intervals.

1. [0, π]

2. $[-\pi, \pi]$

Tangent Line

As the two points come closer and closer together, the secant line comes closer and closer to a line that is tangent to the curve.

- 1. Calculate the slope of the secant through the two points.
- 2. Find the limiting value as the two points approach each other.
- 3. The slope of the curve is the slope of the tangent.

Example 3

1. Find the slope of the secant line.

$$\frac{\Delta y}{\Delta x} = \frac{(2+h)^2 - 4}{h} = \frac{4+4h+h^2 - 4}{h} = 4+h$$

2. Find the limit as
$$h \rightarrow \lim_{h \rightarrow 0} 4 + h = 4$$

3. Find the equation of the line passing through P(2, 4) that has this slope. y - 4 = 4(x - 2)

0.

y = 4x - 4y = 4x - 4

Exercise 3

Find the slope of $y = x^2 - 4x$ and an equation of the tangent line at x = 1.

Slope of a Curve

To find the slope of a curve y = f(x) at the point P(a, f(a)):

- 1. Calculate the slope of the secant line through P and a point Q(a + h, f(a + h)).
- 2. Try to find the limit as $h \rightarrow 0$.
- 3. If the limit exists, it is the slope of the curve at *P*.
- 4. Define the tangent at *P* as the line through *P* with this slope.

The Slope of a Curve at P

The **slope of the curve** y = f(x) at the point P(a, f(a)) is the number

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Provided the limit exists.

The **tangent line to the curve** at *P* is the curve through *P* with this slope.

Example 4 – Solution

b. The slope will be -1/4 if

 $-\frac{1}{a^2} = -\frac{1}{4}$ $a^2 = 4$ $a = \pm 2$

The curve has the slope $-\frac{1}{4}$ at two points $(2, \frac{1}{2})$ and $(-2, -\frac{1}{2})$.

Example 4 – Solution

c. The slope, $m = -\frac{1}{a^2}$, is always negative.

- 1. As $a \to 0^+$ the slope approaches $-\infty$. The tangent becomes increasingly steep.
- 2. Moreover, as $a \to 0^-$ the slope approaches $-\infty$.
- 3. As $a \to \pm \infty$ the slope approaches 0. The tangent becomes increasingly horizontal.

Exercise 4

 $y = 9 - x^2$

a. Find the slope of the curve at x = a

b. Describe what happens to the tangent at x = a as a changes.

Difference Quotient

$$\frac{f(a+h) - f(a)}{h}$$

$$\lim_{h \to \infty} f(a+h) - f(a)$$

$$\lim_{h \to 0} \frac{f(u+h) - f(u)}{h}$$

Foundation of differential calculus

Normal to a Curve

The **normal line** to a curve at a point *P* is the line that is perpendicular to the tangent at that point.

1. Find the slope of the tangent line at *P*.

2.
$$m_{\perp} = -\frac{1}{m_{\parallel}}$$
.
3. $y - f(a) = m_{\perp}(x - a)$

Exercise 5

For $y = x^2 - 4x$ find an equation of the normal line at x = 1. (The slope at x = 1 is m = -2.) Then graph the curve, its tangent line, and its normal line in a square window.

Instantaneous Speed

Position

- y = f(t)
- Average speed

•
$$\frac{\Delta y}{\Delta t} = \frac{f(t) - f(0)}{t - 0}$$

• Instantaneous speed

•
$$\lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

Example 6

 Find the speed of a falling rock dropped from rest at t = 1. (Assume the rock was not moving at t = 0.)

•
$$y = 16t^2$$

•
$$\frac{f(1+h)-f(1)}{h} = \frac{16(1+h)^2 - 16(1)^2}{h} = \frac{16+32h+16h^2 - 16}{h}$$

= $\frac{32h+h^2}{h} = 32+16h$

•
$$\lim_{h \to 0} (32 + h) = 32 \ ft/s$$

Exercise 6

The equation for free fall on the surface of Jupiter is $y = 11.44t^2 m$ with t in seconds. Assume a rock is dropped from a height of 500 m above the surface. Find the speed of the rock at t = 2 s.

Homework

P 92: 1-33, odd