Name _____

Period

Date: Unit 2: Quadratic Equations	Essential Question: You can factor quadratic trinomials by trial and error. How does factoring by grouping compare to trial and error?
Lesson 4: Solving Quadratic Equations by Factoring, Part 2	
Standard: A-REI.4b	Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.
Learning Target:	The student will learn to factor quadratic polynomials when the quadratic coefficient does not equal 1. 80% of the students will be able to factor, $6x^2 - 5x - 6$.
Real-Life Example: Summary	Bungee jumping has become an activity for thrill seeking individuals. The first known bungee jumpers were inhabitants of south Pacific islands. ¹ "In the times when legends were made, a man named Tamalie frequently and viciously beat his wife. One day she ran away in fear and hid in the top of a tree. Tamalie climbed after her despite threats she would jump. When he reached the top, she threw herself off and he plunged after her. However, she had cleverly tied vines to her feet that broke her fall while her husband crashed to his death on the ground." ²

 $^{^1}$ Land diving on Pentecost Island , Vanuatu. Photo courtesy of www.travellerspoint.com 2 https://suite.io/bruce-iliff/2fn22x3

If the tree were 74 ft tall and Tamalie jumped with an initial downward velocity of 5 ft per second, How long was he in the air before he hit the ground?
an before he hit the ground?
This problem can be modeled by the following equation:
$h = -16t^2 - 5t + 74$
where h is his distance above the ground, and t is the time after he jumped.
When Tamalie hit the ground, the height was $h = 0$.
$0 = -16t^2 - 5t + 74$
The problem reduces to solving this quadratic equation:
$-16t^2 - 5t + 74 = 0$
$16t^2 + 5t - 74 = 0$ Multiply by -1
We have factored quadratic trinomials that had leading coefficients of 1, but this quadratic expression has a leading coefficient of 16. Can we find a way to use our previous techniques to factor this quadratic trinomial?

General Quadratic	Polynomials of the form,					
Polynomials:	$ar^2 + br + c = a \neq 1$					
	$ux + bx + c u \neq 1,$					
	are general quadratic polynomials.					
	We have learned how to use grouping to factor quadratic trinomials when the leading coefficient is 1. Now, we will extend that technique to factoring general quadratic trinomials.					
Positive a:	We will always assume that the quadratic coefficient, a , is positive. From a practical standpoint, we can always change the signs of all the coefficients in order to make a positive.					
FOIL:	Let's use the FOIL technique to multiply the following binomials: $(a_1x + c_1)(a_2x + c_2)$					
First:	$a_1a_2x^2$					
Outer:	a_1c_2x					
Inner:	a_2c_1x					
Last:	$c_1 c_2$ Notice that					
	$a = a_1 a_2$					
	$b = a_1c_2 + a_2c_1$					
	$c = c_1 c_2$					
	Furthermore,					
	$ac = a_1 a_2 c_1 c_2$					
	$= (a_1c_2)(a_2c_1)$ The linear coefficient, <i>b</i> , is the sum of the factors of <i>ac</i> . This is the requirement to factor the quadratic trinomial by grouping. We shall illustrate this approach in the following examples and exercises:					

Define the following terms.					
Quadratic Polynomials					
Standard Form of Quadratic Polynomials					
FOIL					
Factor Quadratic Polynomial					
Factor by Grouping					
	Now go back and para	phrase page 4.			
Example 1:	Factor the following quadratic trinomial by grouping.				
	$3x^2 + 7x + 2$				
	The product of the quadratic and constant coefficients is				
	$ac = 3 \cdot 2 = 6$				
	Let's make a table of all the integral factors of 6 and their sums.				
	$b_1 \qquad b_2 \qquad b_1 + b_2$				
	$1 \cdot 6 = 6$	6 1+6=	= 7		

	Therefore, we can factor this quadratic trinomial by grouping. First, we write, $3x^2 + 7x + 2 = 3x^2 + 1 \cdot x + 6x + 2$ Then we group the terms and factor them. $3x^2 + 7x + 2 = (3x^2 + 1 \cdot x) + (6x + 2)$ $= x(3x + 1) + 2(3x + 1)$ $= (x + 2)(3x + 1)$
	This can easily be checked by using FOIL.
Exercise 1:	Factor the following quadratic trinomial by grouping. $4x^2 + 8x + 3$

	If the linear coefficie then we must look fo	If the linear coefficient is negative, and the constant is positive, then we must look for all the negative factors of <i>ac</i> .					
Example 2:	Factor the following quadratic trinomial by grouping.						
	$8x^2 - 22x +$	5					
	The product of the qu	adratic and constant	coefficients is				
	$ac = 8 \cdot 5 =$	$ac = 8 \cdot 5 = 40$					
	Let's make a table of all the negative, integral factors of 40 and their sums.						
	h.	ha	$h_1 + h_2$				
	-1	-40	-41				
	-2	-20	-22				
	-4	-10	-14				
		-8	-13				
	-2 · (-20) =	$-2 \cdot (-20) = 40 \qquad -2 + (-20) = -22$					
	Therefore, we can fac First, we write,	ctor this quadratic trin	nomial by grouping.				
	$8x^2 - 22x + 5 =$	$= 8x^2 - 2x - 20x +$	5				
	Then we group the te	Then we group the terms and factor them.					
	$8x^2 - 22x + 5 =$	$8x^2 - 22x + 5 = (8x^2 - 2x) + (-20x + 5)$					
	=	= 2x(4x-1) - 5(4x)	c – 1)				
=(2x-5)(4x-1)							
	As before, we can eas	As before, we can easily check this by using FOIL.					

Exercise 2:	Factor the following quadratic trinomial by grouping.				
	$4x^2 - 17x + 15$				
	If the constant coefficient is negative, then we must look for all the factors of <i>ac</i> that result in a negative product. That is, one factor must be negative, and the other must be positive.				
Example 3:	Factor the following quadratic trinomial by grouping.				
	$2x^2 - 3x - 5$				
	The product of the quadratic and constant coefficients is				
	$ac = 2 \cdot (-5) = -10$				
	On the next page, let's make a table of all the integral factors of -10 and their sums.				

	b ₁	b ₂	$b_1 + b_2$			
	-1	10	9			
	-2	5	3			
	-5	2	-3			
	-10	1	-9			
	$-5 \cdot 2 = -10$) -5 +	2 = -3			
	Therefore, we can factor this quadratic trinomial by grouping. First, we write,					
	$2x^2 - 3x - 5 = 2x^2 - 5x + 2x - 10$					
	Then we group the te	erms and factor them.				
	$2x^2 - 3x - 5 =$	$(2x^2-5x)+(2x-$	5)			
	= :	$x(2x-5)+1\cdot(2x)$	- 5)			
	= (x+1)(2x-5)					
	We can easily check this by using FOIL.					
Exercise 3:	Factor the following	quadratic trinomial b	y grouping.			
	$6x^2 + 5x - 6$	5				

Real-Life Example:	Let's revisit the story of Tamalie.					
	As we saw, this problem reduces to solving this quadratic equation:					
	$16t^2 + 5t - 74 = 0$					
	In order to factor this quadratic expression, we must find the factors of $16 \cdot (-74) = -1184$.					
	Moreover, the product is negative. Therefore, one factor must be negative, and the other must be positive. The sum of the two factors must be 5; the absolute values of the two factors must be close to $\sqrt{1184} \cong 34.4$. Let's check the negative integers between -30 and -34 and the positive integers that would give a sum of 5.					
		n	5 - n	n(5-n)		
		-30	35	-1050		
		-31	36	-1116		
		-32	37	-1184		
		-33	38	-1254		
		-34	39	-1326		
	We see th	iat,				
	_	32 + 37 = 5	and (-	$-32) \cdot 37 = -32$	1184	
	We can re	ewrite the quad	ratic equation	as,		
	$16t^2 - 32t + 37t - 74 = 0$					
	$(16t^2 - 32t) + (37t - 74) = 0$					
	16t(t-2) + 37(t-2) = 0					
	(16t + 37)(t - 2) = 0					

	Theref	ore, the solutions	are,		
		(16t + 37) = 0	<i>.</i>	$t = -\frac{37}{16}$	s.
	and				
		(t - 2) = 0	<i>.</i>	t = 2 s.	
	The fir jumped with th you me always extrance	st solution is neg d. It is a solution he physical proble odel a physical pr ocheck for extran eous solution.	ative, which r of the equation of the equation of the equation of the equation of the equation of the equation of the equation	neans it is befor on, but it is not c ctraneous solution n equation, you s. You must rejo	e Tamalie consistent on. When must ect any
	The ot	her solution is, t s before he fatall	= 2 s. Tamal y crashed into	ie was in the air the ground.	for two
Class work: p	242: 1-5,	8, 9, 11, 12, 14,	, 16		
Homework: p	242: 17-2	5 odd, 29-37 oc	ld, 44, 49-65	5 odd, 66-68, 7	1-79 odd